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1. Introduction and summary

There exists strong evidence from RHIC data that the hot, dense QCD plasma produced

at the temperature range Tc < T < 4Tc, where Tc is the crossover temperature, remains

strongly coupled (g2N ' 10) despite the partial deconfinement of color charges (see e.g. [1]

for a review). As such, its behavior is similar to that of a nearly perfect fluid and its macro-

scopic properties admit an effective description in terms of hydrodynamics [2]. However,

the hydrodynamic parameters characterizing the fluid are notoriously hard to compute

using conventional approaches and, being of dynamical nature, they are not amenable to

lattice calculations.

On the other hand, the fact that the theory is strongly coupled in the above temper-

ature range suggests the use of nonperturbative gauge/gravity dualities for such compu-

tations. Unfortunately, such dualities do not apply to real QCD but rather to its super-

symmetric generalizations, the prototype example being the AdS/CFT correspondence [3]

relating Type IIB string theory on AdS5 × S5 to N = 4 SYM. Nevertheless, there is some

hope that, in a strongly-coupled yet non-confining regime, some basic aspects of QCD dy-

namics may be captured by a supersymmetric theory possessing a gravity dual. This line of

approach was employed in a series of works [4] for the calculation of transport coefficients

which yielded the remarkable result that the ratio of shear viscosity to entropy density

attains a universal value, close to the observed one, in any theory with a gravity dual [5]

(see also [6]). Such encouraging results provide enough motivation for trying to apply, with

the proper caution, gauge/gravity dualities in the study of phenomena related to the QCD

plasma.

An interesting phenomenon in the above class is jet quenching, the energy loss of high–

pT partons produced in heavy-ion collisions as they interact with the plasma before they

fragment into hadrons [7, 8]. The “transport coefficient” characterizing the phenomenon
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is the jet quenching parameter q̂, usually defined perturbatively as the average loss in four-

momentum squared per mean free path. By analogy to high-energy scattering studied in

the framework of eikonal approximations (see e.g. [8]), the problem of jet quenching can be

formulated [9] in terms of Wilson loops in the adjoint representation. In such a context, q̂

can be calculated according to the relation

〈W A(C)〉 = exp

(

−1

4
q̂L−L2

)

, (1.1)

where W A(C) is an adjoint Wilson loop on a rectangular contour C with one lightlike and

one spacelike side of lengths L− and L respectively, with L ¿ L−.

The fact that Wilson loops of this type lend themselves to strong-coupling calculations

via gauge/gravity dualities [11 – 13] motivated Liu, Rajagopal and Wiedemann [14] to pos-

tulate that the above relation may be taken as a nonperturbative operational definition

of q̂, and to calculate its value in N = 4 SYM according to AdS/CFT. At large N , one

may take 〈W A(C)〉 ' 〈W F (C)〉2, where W F (C) is a fundamental Wilson loop, and use the

AdS/CFT relation 〈W F (C)〉 = exp (iS[C]), where S[C] is the Nambu-Goto action for a

string propagating in the dual gravity background and whose endpoints trace the contour

C. Noting that the exponent in (1.1) is real, the action S[C] must be imaginary, i.e. the

string configuration of interest must be spacelike. Writing S[C] = iS̃[C], where S̃[C] is real,

we find that q̂ is determined by
1

8
q̂L−L2 = S̃[C] , (1.2)

in the limit of small L. The meaning of the above relation is that one should seek a solution

of the string equations of motion with the string endpoints lying on the lightlike loop C

and, provided that the leading term in the small-L expansion of its action is proportional

to L2, read off the coefficient q̂ from (1.2).

Two other observables related to the phenomenon of energy loss in plasmas is the

drag force exerted on a heavy quark as it travels through the plasma and the heavy-quark

diffusion coefficient; in the context of AdS/CFT, these have been calculated in [15, 16]

and [17] respectively while the first approach was further explored in [18 – 20].

The validity of the approach described above for the computation of q̂ and its rela-

tion to the “drag force” approach to the study of parton energy loss has been a subject

of much debate in the recent literature [21 – 23]. To begin, the two approaches are con-

ceptually completely different as the proposal of [14] corresponds to a limiting case of a

quark-antiquark string solution [24] whose action is required to be imaginary, while that

of [15, 16] refers to a single-quark string solution with the whole computation based on

the requirement that the action be real. In this respect, it is now quite clear [15, 22] that

the two types of approach describe different physics, with the approach of [14] presumably

best suited to light quarks and that of [15, 16] best suited to heavy quarks. Nevertheless,

it is still argued [23] that the implicit limiting procedure employed in [14] is not valid and

that the spacelike string used there does not dominate the path integral. Although such

points will not be further discussed here, we must stress that the computations presented

in this paper are valid provided that the proposal of [14] is on solid grounds.
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Be that as it may, the value of q̂ computed in [14] is of the correct order of magnitude,

and the obvious question is how it is modified in more generalized settings, as done for ex-

ample in [25] for certain non-conformal cases. In this paper we compute the jet quenching

parameter, by means of the method outlined above, for the case of N = 4 SYM in the

presence of nonzero R-charges. In section 2, we review the dual supergravity backgrounds,

corresponding to non-extremal rotating D3-branes, and we concentrate on two cases with

one or two equal nonzero angular momenta, for which we state the criteria for thermody-

namic stability and the relations between the gauge-theory and supergravity parameters.

In section 3, we compute exactly the jet quenching parameter q̂ as a function of the ther-

modynamic parameters of the gauge theory, in both the canonical and grand canonical

ensembles. Our main conclusion is that turning on nonzero R-charges generically enhances

the jet quenching phenomenon, in a manner dependent on the number of non-vanishing

equal angular momenta.

2. Non-extremal rotating branes

According to the AdS/CFT correspondence, N = 4 super Yang-Mills theory with SU(N)

gauge group is dual to a stack of N extremal D3-branes. Introducing finite temperature

corresponds to replacing the extremal branes by non-extremal ones [26], while introducing

nonzero R-charges corresponds to generalizing the branes to rotating ones. This class of

metrics has been found in full generality in [27] using previous results from [28]. They

are characterized by the non-extremality parameter µ plus the rotation parameters ai,

i = 1, 2, 3, which correspond to the three generators of the Cartan subalgebra of SO(6)

and are related to three chemical potentials (or R-charges) in the gauge theory. The most

general non-extremal rotating D3-brane solution in the field-theory limit is given by [29]

ds2 = H−1/2

[

−
(

1 − µ4

r4∆

)

dt2 + dx2 + dy2 + dz2

]

+ H1/2 r6∆

f
dr2

+H1/2
[

r2∆1dθ2 + r2∆2 cos2 θdψ2 + 2(a2
2 − a2

3) cos θ sin θ cos ψ sinψdθdψ (2.1)

+(r2 + a2
1) sin2 θdφ2

1 + (r2 + a2
2) cos2 θ sin2 ψdφ2

2 + (r2 + a2
3) cos2 θ cos2 ψdφ2

3

−2
µ2

R2
dt (a1 sin2 θ dφ1 + a2 cos2 θ sin2 ψ dφ2 + a3 cos2 θ cos2 ψ dφ3)

]

,

where the diverse functions are defined as

H =
R4

r4∆
, f = (r2 + a2

1)(r
2 + a2

2)(r
2 + a2

3) − µ4r2 ,

∆ = 1 +
a2

1

r2
cos2 θ +

a2
2

r2
(sin2 θ sin2 ψ + cos2 ψ) +

a2
3

r2
(sin2 θ cos2 ψ + sin2 ψ)

+
a2

2a
2
3

r4
sin2 θ +

a2
1a

2
3

r4
cos2 θ sin2 ψ +

a2
1a

2
2

r4
cos2 θ cos2 ψ , (2.2)

∆1 = 1 +
a2

1

r2
cos2 θ +

a2
2

r2
sin2 θ sin2 ψ +

a2
3

r2
sin2 θ cos2 ψ ,

∆2 = 1 +
a2

2

r2
cos2 ψ +

a2
3

r2
sin2 ψ .
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This metric is supported by a self-dual 5-form F5 = dC4 + ?dC4 with potential

C4 = C1 ∧ dx ∧ dy ∧ dz ,

C1 = −H−1dt +
µ2

R2
(a1 sin2 θ dφ1 + a2 cos2 θ sin2 ψ dφ2 + a3 cos2 θ cos2 ψ dφ3). (2.3)

The location rH of the horizon is defined as the largest root of the cubic, in r2, equation

f = (r2 + a2
1)(r

2 + a2
2)(r

2 + a2
3) − µ4r2 = 0 . (2.4)

The thermodynamic properties of this metric were worked out in [30]–[32, 29]. The Hawking

temperature, entropy, energy above extremality, angular velocities and angular momenta

read

T =
rH

2πµ2R2

(

2r2
H + a2

1 + a2
2 + a2

3 −
a2

1a
2
2a

2
3

r4
H

)

,

S =
N2µ2rH

2πR6
, E =

3N2µ4

8π2R8
, (2.5)

Ωi =
ai

a2
i + r2

H

µ2

R2
, Ji =

N2µ2ai

4π2R6
, i = 1, 2, 3 ,

where the various extensive quantities are understood as the respective densities. We must

here stress that, in extracting information about the gauge theory, one must trade the

supergravity parameters (µ,ai) for the parameters (T ,Ji) or (T ,Ωi) which have a direct

gauge-theory interpretation with Ji and Ωi playing the role of R-charge densities and

chemical potentials respectively; choosing (T ,Ji) corresponds to the Canonical Ensemble

(CE) while choosing (T ,Ωi) corresponds to the Grand Canonical Ensemble (GCE). The

gauge-theory and supergravity parameters are generally not in one-to-one correspondence

and their physical range is determined by thermodynamic stability.

In the rest of this paper, we will consider in detail two cases, parametrized by the

non-extremality parameter µ and one or two angular momentum parameters which are set

to a common value r0. For these spinning branes, the corresponding angular momenta

and velocities are equal and the criteria for thermodynamic stability are easily stated,

translating into the following upper bound for the common angular momentum [30]–[32]

J 6

√

x
(m)
c

S

2π
, (2.6)

where the coefficients x
(m)
c depend on the number m of equal angular momenta, as well as

on whether we utilize the CE or GCE. In particular we recall from table 4.1 of [32] that

CE : x
(1)
c = 5+

√
33

12 , x
(2)
c = ∞ ,

GCE : x
(1)
c = 2 , x

(2)
c = 1 .

(2.7)

We note that increasing the number of equal angular momenta stabilizes the D3-branes,

as indicated here by the disappearance of the bound for the case of two equal angular
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momenta in the CE. In addition, from the same reference we recall that the parametric

space spanned by (µ, r0) is such that

CE : j = 64J2

π6N4T 6 6 j
(m)
c ; j

(1)
c ' 14.12 , j

(2)
c = ∞ ,

GCE : Ω
T 6 πa

(m)
c ; a

(1)
c = 1√

2
, a

(2)
c = 1 .

(2.8)

2.1 Two equal nonzero angular momenta

We first examine the case of two equal nonzero rotation parameters, which we can take as

a2 = a3 = r0 with a1 = 0. The metric (2.2) simplifies to

ds2 = H−1/2

[

−
(

1 − µ4H

R4

)

dt2 + dx2 + dy2 + dz2

]

+ H1/2 r4(r2 − r2
0 cos2 θ)

(r4 − µ4)(r2 − r2
0)

dr2

+H1/2
[

(r2 − r2
0 cos2 θ)dθ2 + r2 cos2 θdΩ2

3 + (r2 − r2
0) sin2 θdφ2

1 (2.9)

− 2
µ2r0

R2
dt cos2 θ(sin2 ψdφ2 + cos2 ψdφ3)

]

,

where

H =
R4

r2(r2 − r2
0 cos2 θ)

(2.10)

and the line element of the three-sphere is

dΩ2
3 = dψ2 + sin2 ψ dφ2

2 + cos2 ψ dφ2
3 . (2.11)

We have also shifted the radial coordinate as r2 → r2 − r2
0. Taking this into account, we

compute from (2.4) the location of the horizon at

rH = µ , (2.12)

while the various thermodynamic quantities read

T =

√
µ2−r2

0

πR2 , S =
N2µ2

√
µ2−r2

0

2πR6 ,

Ω = r0

R2 , J = r0µ2N2

4π2R6 .
(2.13)

The reality condition µ > r0 should be imposed. In what follows we will need to solve eqs.

(2.13) for µ and r0 in terms of the pairs (T, J) or (T,Ω), relevant for the gauge theory, in

the CE and GCE, respectively. Luckily, in this case these equations can be solved exactly

for both ensembles.

• For the CE case the result is most conveniently expressed in terms of the dimensionless

parameter

ξ =
6
√

3

πN2

J

T 3
,

=
3
√

3

2

λ

(1 − λ2)3/2
, (2.14)

λ =
r0

µ

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
6
5

and a function F introduced so that the parameters µ and r0 are given by

µ2 = π2R4T 2
(

1 + F 2
)

, r0 = πR2TF . (2.15)

Then the equation for T in (2.13) is identically satisfied while a substitution into the

equation for J yields the algebraic equation

F (F 2 + 1) =
2

3
√

3
ξ . (2.16)

Its real solution is given by

F (ξ) =
(ξ +

√

1 + ξ2)1/3 − (ξ +
√

1 + ξ2)−1/3

√
3

. (2.17)

Note that, since 0 6 λ 6 1, the parameter 0 6 ξ < ∞ monotonically. Also, for small

ξ, it admits the expansion

F (ξ) =
1√
3

(

2

3
ξ − 8

81
ξ3 +

32

729
ξ5

)

+ O(ξ7) , (2.18)

while for large ξ it behaves as F (ξ) ' 21/33−1/2ξ1/3. In this case, as we see from the

stability conditions (2.6)-(2.8), no restrictions are placed on the various parameters

except the obvious one µ > r0, mentioned above.

• For the case of the GCE, it is convenient to employ the dimensionless parameter

ξ̂ =
Ω

πT
=

λ√
1 − λ2

, λ =
r0

µ
. (2.19)

Introducing the function F as in (2.15), we simply find F (ξ̂) = ξ̂. In this case the

stability conditions (2.6)-(2.8) require that

ξ̂ 6 ξ̂max = 1 and λ 6
1√
2

, (2.20)

which are in fact equivalent. Note that, were it not for the thermodynamic stability

considerations, there would not be any a priori reason for restricting the range of ξ̂

as above.

For µ = 0 the background metric (2.9) corresponds to a uniform distribution of D3-

branes on a three-dimensional spherical shell with radius r0 on R
4 and supersymmetry is

restored. In the limit µ → 0, the thermodynamic description becomes meaningless as the

temperature and entropy attain imaginary values.

2.2 One nonzero angular momentum

We next examine the case of only one nonzero rotation parameter, which we can take as

a1 = r0 with a2 = a3 = 0. The metric (2.2) simplifies to

ds2 = H−1/2

[

−
(

1 − µ4H

R4

)

dt2 + dx2 + dy2 + dz2

]

+ H1/2 r2(r2 + r2
0 cos2 θ)

r4 + r2
0r

2 − µ4
dr2

+H1/2
[

(r2 + r2
0 cos2 θ)dθ2 + r2 cos2 θdΩ2

3 + (r2 + r2
0) sin2 θdφ2

1 (2.21)

− 2
µ2r0

R2
sin2 θdtdφ1

]

,
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where

H =
R4

r2(r2 + r2
0 cos2 θ)

(2.22)

and the line element of the three-sphere is as in (2.11) above. Now the horizon is located

at r = rH with

r2
H =

1

2

(

−r2
0 +

√

r4
0 + 4µ4

)

, (2.23)

while the various thermodynamic quantities read

T =
rH

√

r4
0 + 4µ4

2πR2µ2
, S =

N2µ2rH

2πR6
,

Ω =
r0r

2
H

R2µ2
, J =

r0µ
2N2

4π2R6
. (2.24)

Again, we need to solve eqs. (2.24) for µ and r0 in terms of (T, J) or (T,Ω).

• For the case of the CE we cannot explicitly solve for the parameters µ and r0 in terms

of T and J . Nevertheless this can be done perturbatively as follows. Introducing a

dimensionless parameter ξ given by

ξ =
2
√

2

πN2

J

T 3
,

=
16λ

(λ4 + 4)3/2(
√

λ4 + 4 − λ2)3/2
, λ =

r0

µ
. (2.25)

and a function F such that

µ4 = π4R8T 4F 3(2 − F ) , r2
0 = 2π2R4T 2F (F − 1) , (2.26)

the equation for T in (2.24) is identically satisfied. Substitution into the equation for

J gives the algebraic equation

F 4(F − 1)(F − 2) + ξ2 = 0 . (2.27)

Examining (2.25) we note that the parameter ξ, regarded as a function of λ, goes to

zero for small and large values of λ. In between them it reaches a maximum with

ξmax =

(

2879 + 561
√

33

3456

)1/2

' 1.33 , at λ0 =

(

19 + 3
√

33

8

)1/4

' 1.46 . (2.28)

This is consistent with the fact that (2.27) has no solutions for large enough ξ. This

maximum value is found by requiring that, besides (2.27), its first derivative w.r.t.

F vanishes as well. These conditions give F = 15+
√

33
12 ' 1.73 at ξ = ξmax as above,

which is the maximum value for which (2.27) has a solution. For 0 6 ξ < ξmax the

algebraic equation (2.27) has two solutions that can be approximated for small values

of ξ by the perturbative expansions

near F (ξ) = 1 : F (ξ) = 1 + ξ2 − 3ξ4 + 16ξ6 + O(ξ8) ,

near F (ξ) = 2 : F (ξ) = 2 − 1

16
ξ2 − 3

256
ξ4 − 29

8192
ξ6 + O(ξ8) . (2.29)
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Note next that the stability condition (2.6) requires that λ 6 λ0 which implies that

the second solutions corresponding to the expansion near F = 2 should be rejected.

Also note that the parameter in (2.8) is j = 8ξ2 and its maximum value evaluated

using ξmax is well approximated by the result quoted in (2.8).

• For the GCE case it is possible to explicitly solve for the parameters µ and r0 in

terms of T and Ω. Introducing the dimensionless parameter

ξ̂ =
Ω√
2πT

= λ
(
√

λ4 + 4 − λ2)1/2

√
λ4 + 4

, (2.30)

λ =
r0

µ
,

and the function F defined as in (2.26), we find upon substitution into the expression

for Ω the quadratic equation

(F − 1)(F − 2) + ξ̂2 = 0 , (2.31)

with solutions

F = F±(ξ̂) =
3

2
±

√

1

4
− ξ̂2 . (2.32)

In this case the stability condition (2.6) requires that

λ 6

(

4

3

)1/4

' 1.075 , (2.33)

which is in fact the value in which the maximum value of ξ̂ in (2.31) is acquired and

is also in agreement with (2.8). Then it follows that

0 6 ξ̂ 6 ξ̂max =
1

2
, (2.34)

and that the solution F+ is not stable.

For µ = 0 the background metric (2.21) corresponds to a uniform distribution of D3-

branes on a disc with radius r0 and supersymmetry is restored. In the limit µ → 0 the

thermodynamic quantities in (2.24) are finite, but, on the other hand, this limit lies beyond

the stability bounds.

3. Computation of the jet quenching parameter

In what follows, we will generalize the calculation of [14] for the case of rotating non-

extremal branes and we will calculate the jet quenching parameter for the cases considered

in section 2. This calculation corresponds to a special limiting case of the Wilson loop

calculation for a quark-antiquark pair moving with velocity v and located on a probe brane

at u = Λ, in which one takes the lightlike limit v → 1 before sending the probe brane to

– 8 –
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infinity by taking Λ → ∞ [24]. For details on the various salient points of the calculation,

the reader is referred to [22, 23].

In order to cover general situations we will consider a general class of ten-dimensional

metrics of the form

ds2 = Gttdt2 + Gxxdx2 + Gyydy2 + Grrdr2 + Gθθdθ2 + · · · , (3.1)

where the ellipses denote other possible terms involving the remaining five variables as well

as mixed terms. We pass to the light-cone coordinates x± = 1√
2
(t ± x) and consider a

Wilson loop on a rectangular contour C of sides L− and L along x− and y respectively;

in the approximation where (1.2) is valid, we must have L ¿ L−. In the supergravity

approach, the expectation of the Wilson loop is given by the extremum of the Nambu-

Goto action for a string extending in the internal space whose endpoints trace the contour

C. To fix reparametrization invariance, we can take (τ, σ) = (x−, y). Since L− À L, we

may assume translational invariance along x−, i.e. xµ = xµ(y). The embedding of the

string in the background is described by the functions u = u(y) and θ = θ(y) with all

other coordinates set to constants.1 We assume that this is consistent with the equations

of motion and indeed this is the case for our metrics. In summary, the surface we are

interested in is parametrized by the embedding

u = u(y) , θ = θ(y) , x+ , . . . = const. , (3.2)

subject to the boundary condition u(±L/2)→∞. The Nambu-Goto action for this config-

uration is then given by S1 = iS̃1 with2

S̃1 =
L−

2π

∫

dy
√

f(u) + g(u)u′2 + h(u)θ′2 , (3.3)

where the prime denotes a derivative with respect to y and

f(u) =
1

2
(Gxx + Gtt)Gyy , g(u) =

1

2
(Gxx + Gtt)Grr , h(u) =

1

2
(Gxx + Gtt)Gθθ . (3.4)

Some comments are in order here. First, although in all our examples the metric compo-

nents depend explicitly on θ, in the functions f , g and h defined in (3.4) all θ-dependence

drops out. This fact, which does not hold in static Wilson-loop calculations (see [13] for

static Wilson loops using rotating branes and their supersymmetric limits), is the main rea-

son that makes the rest of the calculation possible (and straightforward) in the rotating-

brane case. Second, in all of our examples f(u) attains a constant value which we will

henceforth denote by f0.

1To conform with established notation in the literature we will use u instead of r in the Wilson loop

computations.
2We may allow some of the angles φi to depend on y in a way consistent with the equations of motion,

without affecting much the resulting action below. In these cases one effectively replaces θ′2 by θ′2+sin2 θφ′2.

This is only the upper cap of S2 since 0 6 θ 6 π/2. More specifically, φ = φ2 = φ3 and φ = φ1 for the

cases of two angular momenta and one angular momentum, respectively.
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The action (3.3) is obviously independent of y and θ. This implies that the associated

“Hamiltonian” and “angular momentum” are conserved, leading to the equations

gu′2 + hθ′2 = f0γ
2 , hθ′ = δ , (3.5)

where γ2 and δ are integration constants, the former chosen to be positive semidefinite

since g(u) is positive for large enough u.

Since it will turn out that in our cases h(u) ∼ 1/u2, we will take the constant δ = 0

since otherwise we cannot reach the boundary at u = ∞ and simultaneously preserve the

reality of the solution to the differential equation. Then this equation has a solution where

u starts from u(−L/2) = ∞, decreases until it reaches a turning point, and then increases

until it returns back to u(L/2) = ∞. The turning point corresponds to the largest zero of

g−1(u), denoted by umin, and, by symmetry, must occur at y = 0. Then, eq. (3.5) can be

integrated with the result

L =
2√
f0 γ

∫ ∞

umin

du
√

g(u) =
2√
f0 γ

I[g] . (3.6)

where I[g] denotes the explicit expression of the integral as a functional of g(u) that depends

on the metric components as in (3.4). Meanwhile, given eq. (3.5), eq. (3.3) gives for the

action

S̃1 =

√
f0L

−L

2π

√

1 + γ2 , (3.7)

which is obviously real, implying that the solutions are spacelike as mentioned in the

introduction. From (3.7), we must subtract the “self-energy” contribution arising from the

disconnected worldsheets of two strings dangling from u = ∞ down to u = umin at constant

y = ±L/2. This contribution is evaluated by choosing the parametrization (τ, σ) = (x−, u),

noting that ∂uy = 0. The result is

S̃0 =

√
f0L

−L

2π
γ , (3.8)

and, unlike the cases considered in [11 – 13] for the heavy quark-antiquark potential, it is

finite. The “regularized” action is then S = iS̃ with

S̃ = S̃1 − S̃0

=

√
f0L

−L

2π

(

√

1 + γ2 − γ
)

=

√
f0L

−L

4π
γ−1 + O(γ−3)

=
f0L

−L2

8πI[g]
+ . . . , (3.9)

where in the last step we have used (3.6) and expanded for small separation distances L

or, equivalently, for large γ. Then, the jet quenching parameter can be read off from eq.

(1.2) to be

q̂ =
f0

πI[g]
. (3.10)
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3.1 The case of zero R-charge density

In this case r0 = 0 and the various functions appearing in our general expressions become

f0 =
µ4

2R4
, g =

µ4

2

1

u4 − µ4
, (3.11)

whereas h = µ4

2u2 mentioned above as being a general feature of our metrics. Hence,

I[g] =
µ2

√
2

∫ ∞

µ

du
√

u4 − µ4
=

µ

2
K(1/

√
2) . (3.12)

For vanishing r0 we have that µ = πR2T and therefore

q̂0 =
π2R2T 3

K(1/
√

2)
=

π3/2Γ(3/4)√
2Γ(5/4)

R2T 3 . (3.13)

This is the same as the result derived in [14].

3.2 Two equal nonzero angular momenta

For the case of two equal nonzero angular momenta, the various functions appearing in our

general expressions are

f0 =
µ4

2R4
, g =

µ4

2

u2

(u4 − µ4)(u2 − r2
0)

, (3.14)

whereas h = µ4

2u2 as above. Hence,

I[g] =
µ2

√
2

∫ ∞

µ

du u
√

(u4 − µ4)(u2 − r2
0)

=
µ

2
K(k) , (3.15)

with the modulus k of the elliptic integral being given by

k2 =
1

2

(

1 +
r2
0

µ2

)

=
1

2

1 + 2F 2

1 + F 2
, (3.16)

where we have used (2.15) to pass from the supergravity to the gauge-theory parameters

and F is understood as F (ξ) in the CE and as F (ξ̂) in the GCE. Therefore, the jet quenching

parameter is given by

q̂ =
µ3

πR4K(k)
=

π2R2T 3

K(k)
(1 + F )3/2 =

π2R2T 3

K(k)

1

(2k′2)3/2
, (3.17)

where all three different expressions are equivalent and k′ =
√

1 − k2 is the complementary

modulus.

We would like to compare this result with (3.13) in the absence of R-charges. The

comparison should be performed at the same temperature and then viewed as a function

– 11 –
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Figure 1: The q̂/q̂0 ratio for the case of two equal nonzero angular parameters plotted as a function

of the dimensionless parameter 0 6 ξ < ∞ in (2.14)appropriate for the CE. Some indicative values

are: (ξ, q̂

q̂0

) = (1

2
, 1.04), (1, 1.15) and (3, 1.76). The corresponding plot for the GCE in terms of

the parameter 0 6 ξ̂ 6 1 in (2.19)is similar in shape with indicative values (ξ̂, q̂

q̂0

) = (1

2
, 1.33) and

(1, 2.43).

of the parameters ξ and ξ̂ for the cases of the CE and the GCE, respectively. Keeping this

in mind, the ratio with that in the non-rotating case is

q̂

q̂0
=

K(1/
√

2)

K(k)
(1 + F )3/2 =

K(1/
√

2)

K(k)

1

(2k′2)3/2
. (3.18)

This is a monotonically increasing function of ξ or ξ̂, as is also demonstrated in figure 1.

For small deviations from unity we have the expansions

CE :
q̂

q̂0
= 1 + 0.188 ξ2 − 0.052 ξ4 + 0.026 ξ6 + O(ξ8) ,

GCE :
q̂

q̂0
= 1 + 1.27 ξ̂2 + 0.188 ξ̂4 − 0.038 ξ̂6 + O(ξ̂8) . (3.19)

3.3 One nonzero angular momentum

For the case of one nonzero angular momentum, we have

f0 =
µ4

2R4
, g =

µ4

2

1

u4 + r2
0u

2 − µ4
=

µ4

2

1

(u2 − u2
H)(u2 + u2

+)
, (3.20)

where

u2
+ =

1

2

(

r2
0 +

√

r4
0 + 4µ4

)

, (3.21)

while h = µ4

2u2 as before. Then

I[g] =
µ2

√
2

∫ ∞

uH

du
√

(u2 − u2
H)(u2 + u2

+)
=

µ2

√
2

K(k)

(r4
0 + 4µ4)1/4

, (3.22)
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with the modulus k being

k2 =
1

2

(

1 +
r2
0

√

r4
0 + 4µ4

)

=
F

2
, (3.23)

where we have used (2.15). Therefore, the jet quenching parameter is given by

q̂ =
µ2(r4

0 + 4µ4)1/4

√
2πR4K(k)

=
π2R2T 3

K(k)
F 2(2 − F )1/2 =

π2R2T 3

K(k)
(2k2)2(2k′2)1/2 . (3.24)

Again we compare this to the zero R-charge result (3.13) at fixed common temperature.

We find that the ratio is

q̂

q̂0
=

K(1/
√

2)

K(k)
F 2(2 − F )1/2 =

K(1/
√

2)

K(k)
(2k2)2(2k′2)1/2 . (3.25)

As a function of the dimensionless parameter 0 6 ξ 6 ξmax it is initially increasing from

unity, then it reaches a maximum at some ξ0, after which it decreases to reach the final

value at ξ = ξmax. A similar shape is obtained also for the plot as a function of ξ̂. These

are depicted in figure 2. For small deviations from unity, we have the expansions

CE :
q̂

q̂0
= 1 + 1.27 ξ2 − 4.36 ξ4 + 22.65 ξ6 + O(ξ8) ,

GCE :
q̂

q̂0
= 1 + 1.27 ξ̂2 + 0.731 ξ̂4 + 0.528 ξ̂6 + O(ξ̂8) . (3.26)

As mentioned in the introduction, an alternative, but not apparently equivalent, de-

scription of the problem of energy loss in the plasma is provided by the drag force felt

by a particle passing through the medium. In this latter context, the authors of [20], uti-

lizing the same metric (2.21), showed that the drag force is an increasing function of the

R-charge for small values of a parameter similar to ξ. In this perturbative regime, this

is in qualitative agreement with our results. On the other hand, we have shown that the

ratio q̂/q̂0 reaches a maximum at a finite value of ξ (or ξ̂) lower than its maximal value.

In [19], a computation of the drag force was performed using a five-dimensional black hole

solution [33] arising from the dimensionally reduced spinning D3-brane solutions that we

have been using. Indeed, in that case the drag force exhibits a behavior (see figure 2

of [19]) sensitive to the number of equal nonzero angular momenta, which is qualitatively

in agreement with expectations based on our computation of the jet quenching parameter.

Note added. While this paper was being typewritten, we received [34] and [35] whose

results partially overlap with those of section 3.3.
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Figure 2: The q̂/q̂0 ratio for the case of one nonzero angular parameter and the CE plotted as

a function of the dimensionless parameter 0 ≤ ξ ≤ ξmax in (2.25).The maximum and final values

occurring at ξ0 = 1.09 and ξmax = 1.33 are q̂

q̂0

= 1.37 and 1.19, respectively. The corresponding

plot for the GCE in terms of the parameter 0 6 ξ̂ 6
1

2
in (2.31)is similar in shape. The maximum

and final values occurring at ξ̂0 = 0.499 and ξ̂max = 1

2
, are q̂

q̂0

= 1.369 and 1.368, respectively. Note

the closeness of the maximum and final values in the GCE case.

References

[1] E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog.

Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227]; What RHIC experiments and theory tell

us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066];

M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: from ’a new state of

matter’ to ’the perfect fluid’, Rept. Prog. Phys. 69 (2006) 2005 [nucl-ex/0603003].

[2] D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions

at the SPS and RHIC, nucl-th/0110037;

P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions,

nucl-th/0305084.

[3] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[4] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066];

From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052];

From AdS/CFT correspondence to hydrodynamics. II: sound waves, JHEP 12 (2002) 054

[hep-th/0210220];

– 14 –

http://arxiv.org/abs/hep-ph/0312227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA750%2C64
http://arxiv.org/abs/hep-ph/0405066
http://arxiv.org/abs/nucl-ex/0603003
http://arxiv.org/abs/nucl-th/0110037
http://arxiv.org/abs/nucl-th/0305084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C081601
http://arxiv.org/abs/hep-th/0104066
http://jhep.sissa.it/stdsearch?paper=09%282002%29043
http://arxiv.org/abs/hep-th/0205052
http://jhep.sissa.it/stdsearch?paper=12%282002%29054
http://arxiv.org/abs/hep-th/0210220


J
H
E
P
0
1
(
2
0
0
7
)
0
6
5

A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity

in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264];

D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052

[hep-th/0601157].

[5] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on

stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213]; Viscosity in strongly interacting

quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601

[hep-th/0405231];

A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett.

93 (2004) 090602 [hep-th/0311175];

A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys.

Lett. B 609 (2005) 392 [hep-th/0408095].

[6] J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016

[hep-th/0601144];

K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical

potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010].

[7] M. Gyulassy and M. Plumer, Jet quenching in dense matter, Phys. Lett. B 243 (1990) 432;

M.H. Thoma and M. Gyulassy, Quark damping and energy loss in the high temperature QCD,

Nucl. Phys. B 351 (1991) 491;

R. Baier, D. Schiff and B.G. Zakharov, Energy loss in perturbative QCD, Ann. Rev. Nucl.

Part. Sci. 50 (2000) 37 [hep-ph/0002198];

B. Muller, Phenomenology of jet quenching in heavy ion collisions, Phys. Rev. D 67 (2003)

061901 [nucl-th/0208038];

M. Gyulassy, I. Vitev, X.-N. Wang and B.-W. Zhang, Jet quenching and radiative energy loss

in dense nuclear matter, nucl-th/0302077.

[8] A. Kovner and U.A. Wiedemann, Eikonal evolution and gluon radiation, Phys. Rev. D 64

(2001) 114002 [hep-ph/0106240].

[9] U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity

expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129];

A. Kovner and U.A. Wiedemann, Gluon radiation and parton energy loss, hep-ph/0304151.

[10] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigné and D. Schiff, Radiative energy loss and
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